Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Stem Cell Reports ; 17(3): 522-537, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1692862

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) commonly have manifestations of heart disease. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome encodes 27 proteins. Currently, SARS-CoV-2 gene-induced abnormalities of human heart muscle cells remain elusive. Here, we comprehensively characterized the detrimental effects of a SARS-CoV-2 gene, Orf9c, on human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) by preforming multi-omic analyses. Transcriptomic analyses of hPSC-CMs infected by SARS-CoV-2 with Orf9c overexpression (Orf9cOE) identified concordantly up-regulated genes enriched into stress-related apoptosis and inflammation signaling pathways, and down-regulated CM functional genes. Proteomic analysis revealed enhanced expressions of apoptotic factors, whereas reduced protein factors for ATP synthesis by Orf9cOE. Orf9cOE significantly reduced cellular ATP level, induced apoptosis, and caused electrical dysfunctions of hPSC-CMs. Finally, drugs approved by the U.S. Food and Drug Administration, namely, ivermectin and meclizine, restored ATP levels and ameliorated CM death and functional abnormalities of Orf9cOE hPSC-CMs. Overall, we defined the molecular mechanisms underlying the detrimental impacts of Orf9c on hPSC-CMs and explored potentially therapeutic approaches to ameliorate Orf9c-induced cardiac injury and abnormalities.


Subject(s)
COVID-19/pathology , Coronavirus Nucleocapsid Proteins/genetics , Genome-Wide Association Study/methods , SARS-CoV-2/genetics , Action Potentials/drug effects , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Apoptosis/genetics , COVID-19/virology , Down-Regulation , Humans , Ivermectin/pharmacology , Meclizine/pharmacology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phosphoproteins/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Interaction Maps/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , SARS-CoV-2/isolation & purification , Signal Transduction/genetics , Transcriptome/drug effects , Up-Regulation
2.
Stem Cell Reports ; 17(3): 538-555, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1692861

ABSTRACT

To date, the direct causative mechanism of SARS-CoV-2-induced endotheliitis remains unclear. Here, we report that human ECs barely express surface ACE2, and ECs express less intracellular ACE2 than non-ECs of the lungs. We ectopically expressed ACE2 in hESC-ECs to model SARS-CoV-2 infection. ACE2-deficient ECs are resistant to the infection but are more activated than ACE2-expressing ones. The virus directly induces endothelial activation by increasing monocyte adhesion, NO production, and enhanced phosphorylation of p38 mitogen-associated protein kinase (MAPK), NF-κB, and eNOS in ACE2-expressing and -deficient ECs. ACE2-deficient ECs respond to SARS-CoV-2 through TLR4 as treatment with its antagonist inhibits p38 MAPK/NF-κB/ interleukin-1ß (IL-1ß) activation after viral exposure. Genome-wide, single-cell RNA-seq analyses further confirm activation of the TLR4/MAPK14/RELA/IL-1ß axis in circulating ECs of mild and severe COVID-19 patients. Circulating ECs could serve as biomarkers for indicating patients with endotheliitis. Together, our findings support a direct role for SARS-CoV-2 in mediating endothelial inflammation in an ACE2-dependent or -independent manner.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Models, Biological , SARS-CoV-2/physiology , Toll-Like Receptor 4/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Profiling , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , Single-Cell Analysis , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1597826

ABSTRACT

Organoids are tiny, self-organized, three-dimensional tissue cultures that are derived from the differentiation of stem cells. The growing interest in the use of organoids arises from their ability to mimic the biology and physiology of specific tissue structures in vitro. Organoids indeed represent promising systems for the in vitro modeling of tissue morphogenesis and organogenesis, regenerative medicine and tissue engineering, drug therapy testing, toxicology screening, and disease modeling. Although 2D cell cultures have been used for more than 50 years, even for their simplicity and low-cost maintenance, recent years have witnessed a steep rise in the availability of organoid model systems. Exploiting the ability of cells to re-aggregate and reconstruct the original architecture of an organ makes it possible to overcome many limitations of 2D cell culture systems. In vitro replication of the cellular micro-environment of a specific tissue leads to reproducing the molecular, biochemical, and biomechanical mechanisms that directly influence cell behavior and fate within that specific tissue. Lineage-specific self-organizing organoids have now been generated for many organs. Currently, growing cardiac organoid (cardioids) from pluripotent stem cells and cardiac stem/progenitor cells remains an open challenge due to the complexity of the spreading, differentiation, and migration of cardiac muscle and vascular layers. Here, we summarize the evolution of biological model systems from the generation of 2D spheroids to 3D organoids by focusing on the generation of cardioids based on the currently available laboratory technologies and outline their high potential for cardiovascular research.


Subject(s)
Adult Stem Cells/cytology , Organ Culture Techniques/methods , Organoids/cytology , Cell Differentiation , Heart/physiology , Humans , Models, Biological , Pluripotent Stem Cells/cytology , Regeneration , Spheroids, Cellular/cytology
4.
Cells ; 10(11)2021 11 10.
Article in English | MEDLINE | ID: covidwho-1512137

ABSTRACT

Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.


Subject(s)
Cardiovascular Diseases/therapy , Genomics , Pluripotent Stem Cells/transplantation , Artificial Intelligence , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cardiovascular System/cytology , Cardiovascular System/growth & development , Cell Differentiation , Drug Discovery , Gene Editing , Humans , Models, Biological , Pluripotent Stem Cells/cytology , Precision Medicine , Regenerative Medicine , Safety , Translational Research, Biomedical
5.
Nat Immunol ; 22(11): 1416-1427, 2021 11.
Article in English | MEDLINE | ID: covidwho-1475314

ABSTRACT

Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.


Subject(s)
COVID-19/immunology , Cytokines/metabolism , Inflammation/immunology , Macrophages/immunology , SARS-CoV-2/physiology , Ubiquitins/metabolism , Cell Differentiation , Coronavirus Papain-Like Proteases/metabolism , Cytokines/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Immune Evasion , Immunity, Innate , Influenza A virus/physiology , Influenza, Human/immunology , Pluripotent Stem Cells/cytology , Ubiquitination , Ubiquitins/genetics , Zika Virus/physiology , Zika Virus Infection/immunology
6.
Stem Cell Reports ; 16(9): 2274-2288, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1360129

ABSTRACT

Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. Here, using an established in vivo hamster model, we demonstrate that SARS-CoV-2 can be detected in cardiomyocytes of infected animals. Furthermore, we found damaged cardiomyocytes in hamsters and COVID-19 autopsy samples. To explore the mechanism, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be productively infected by SARS-CoV-2, leading to secretion of the monocyte chemoattractant cytokine CCL2 and subsequent monocyte recruitment. Increased CCL2 expression and monocyte infiltration was also observed in the hearts of infected hamsters. Although infected CMs suffer damage, we find that the presence of macrophages significantly reduces SARS-CoV-2-infected CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and suggests a mechanism of immune cell infiltration and histopathology in heart tissues of COVID-19 patients.


Subject(s)
COVID-19/pathology , Chemokine CCL2/metabolism , Heart Injuries/virology , Monocytes/immunology , Myocytes, Cardiac/metabolism , Animals , Cell Communication/physiology , Cell Line , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Macrophages/immunology , Male , Myocytes, Cardiac/virology , Pluripotent Stem Cells/cytology , Vero Cells
7.
Int J Mol Sci ; 22(14)2021 Jul 17.
Article in English | MEDLINE | ID: covidwho-1323268

ABSTRACT

Organoids represent one of the most important advancements in the field of stem cells during the past decade. They are three-dimensional in vitro culturing models that originate from self-organizing stem cells and can mimic the in vivo structural and functional specificities of body organs. Organoids have been established from multiple adult tissues as well as pluripotent stem cells and have recently become a powerful tool for studying development and diseases in vitro, drug screening, and host-microbe interaction. The use of stem cells-that have self-renewal capacity to proliferate and differentiate into specialized cell types-for organoids culturing represents a major advancement in biomedical research. Indeed, this new technology has a great potential to be used in a multitude of fields, including cancer research, hereditary and infectious diseases. Nevertheless, organoid culturing is still rife with many challenges, not limited to being costly and time consuming, having variable rates of efficiency in generation and maintenance, genetic stability, and clinical applications. In this review, we aim to provide a synopsis of pluripotent stem cell-derived organoids and their use for disease modeling and other clinical applications.


Subject(s)
Drug Evaluation, Preclinical/methods , Organ Culture Techniques/methods , Organoids/cytology , Pluripotent Stem Cells/cytology , Animals , Humans , Models, Biological , Organoids/drug effects , Organoids/metabolism , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/metabolism
8.
Stem Cells Transl Med ; 10(2): 239-250, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064427

ABSTRACT

Infection with the SARS-CoV-2 virus has rapidly become a global pandemic for which we were not prepared. Several clinical trials using previously approved drugs and drug combinations are urgently under way to improve the current situation. A vaccine option has only recently become available, but worldwide distribution is still a challenge. It is imperative that, for future viral pandemic preparedness, we have a rapid screening technology for drug discovery and repurposing. The primary purpose of this research project was to evaluate the DeepNEU stem-cell based platform by creating and validating computer simulations of artificial lung cells infected with SARS-CoV-2 to enable the rapid identification of antiviral therapeutic targets and drug repurposing. The data generated from this project indicate that (a) human alveolar type lung cells can be simulated by DeepNEU (v5.0), (b) these simulated cells can then be infected with simulated SARS-CoV-2 virus, (c) the unsupervised learning system performed well in all simulations based on available published wet lab data, and (d) the platform identified potentially effective anti-SARS-CoV2 combinations of known drugs for urgent clinical study. The data also suggest that DeepNEU can identify potential therapeutic targets for expedited vaccine development. We conclude that based on published data plus current DeepNEU results, continued development of the DeepNEU platform will improve our preparedness for and response to future viral outbreaks. This can be achieved through rapid identification of potential therapeutic options for clinical testing as soon as the viral genome has been confirmed.


Subject(s)
COVID-19 Drug Treatment , Drug Discovery , Drug Repositioning , Machine Learning , Pluripotent Stem Cells/cytology , SARS-CoV-2/drug effects , Alveolar Epithelial Cells/virology , Computer Simulation , Disease Outbreaks , Drug Industry/trends , Genome, Viral , Genotype , Humans , Lung/virology , Pandemics , SARS-CoV-2/pathogenicity
9.
Antiviral Res ; 184: 104955, 2020 12.
Article in English | MEDLINE | ID: covidwho-871719

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is considered as the most significant global public health crisis of the century. Several drug candidates have been suggested as potential therapeutic options for COVID-19, including remdesivir, currently the only authorized drug for use under an Emergency Use Authorization. However, there is only limited information regarding the safety profiles of the proposed drugs, in particular drug-induced cardiotoxicity. Here, we evaluated the antiviral activity and cardiotoxicity of remdesivir using cardiomyocytes-derived from human pluripotent stem cells (hPSC-CMs) as an alternative source of human primary cardiomyocytes (CMs). In this study, remdesivir exhibited up to 60-fold higher antiviral activity in hPSC-CMs compared to Vero E6 cells; however, it also induced moderate cardiotoxicity in these cells. To gain further insight into the drug-induced arrhythmogenic risk, we assessed QT interval prolongation and automaticity of remdesivir-treated hPSC-CMs using a multielectrode array (MEA). As a result, the data indicated a potential risk of QT prolongation when remdesivir is used at concentrations higher than the estimated peak plasma concentration. Therefore, we conclude that close monitoring of the electrocardiographic/QT interval should be advised in SARS-CoV-2-infected patients under remdesivir medication, in particular individuals with pre-existing heart conditions.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/virology , Myocytes, Cardiac/virology , Pluripotent Stem Cells/cytology , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Amides/pharmacology , Animals , Antimalarials/pharmacology , COVID-19/complications , Chlorocebus aethiops , Chloroquine/pharmacology , Electrocardiography , Flow Cytometry , Heart Diseases/complications , Humans , Hydroxychloroquine/pharmacology , Microscopy, Fluorescence , Myocytes, Cardiac/drug effects , Pluripotent Stem Cells/virology , Pyrazines/pharmacology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Vero Cells , Viral Plaque Assay , COVID-19 Drug Treatment
10.
Cell Stem Cell ; 27(6): 962-973.e7, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-779662

ABSTRACT

A hallmark of severe COVID-19 pneumonia is SARS-CoV-2 infection of the facultative progenitors of lung alveoli, the alveolar epithelial type 2 cells (AT2s). However, inability to access these cells from patients, particularly at early stages of disease, limits an understanding of disease inception. Here, we present an in vitro human model that simulates the initial apical infection of alveolar epithelium with SARS-CoV-2 by using induced pluripotent stem cell-derived AT2s that have been adapted to air-liquid interface culture. We find a rapid transcriptomic change in infected cells, characterized by a shift to an inflammatory phenotype with upregulation of NF-κB signaling and loss of the mature alveolar program. Drug testing confirms the efficacy of remdesivir as well as TMPRSS2 protease inhibition, validating a putative mechanism used for viral entry in alveolar cells. Our model system reveals cell-intrinsic responses of a key lung target cell to SARS-CoV-2 infection and should facilitate drug development.


Subject(s)
Alveolar Epithelial Cells/virology , Inflammation/virology , SARS-CoV-2/physiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , COVID-19/virology , Cells, Cultured , Drug Development , Enzyme Inhibitors/pharmacology , Humans , Models, Biological , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/virology , RNA-Seq , Serine Endopeptidases/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL